Бьется в тесной оплетке сигнал

Бьется в тесной оплетке сигнал.

 

Назначение любой радиотехнической линии передачи состоит в том, чтобы передать сигнал от источника к нагрузке с минимальными потерями и минимальными искажениями. И внутриблочный монтаж и провода и кабели, соединяющие различные радиоэлектронные устройства, например, передающую телевизионную камеру с видеомагнитофоном, все это - линии связи. Устройство и принцип действия линий связи зависит от диапазона частот сигналов, которые планируется по ним передавать. Сигналы в диапазоне частот от 1 Гц до 30 кГц – это сигналы звуковых частот, они обычно передаются по проводам. Провод содержит одну или несколько скрученных проволок или изолированных жил, защищенных легкой неметаллической оболочкой или оплеткой из волокнистых материалов. Если оплетка должна выдерживать большие механические нагрузки и защищать провод от грызунов, ее делают из проволоки.

Совет:

Для передачи сигналов звуковых частот используйте провода, а не коаксиальные кабели.

Сигналы в диапазоне частот от 30 кГц до 300 ГГц – это сигналы радиочастот. Для передачи таких сигналов используют экранированные провода и коаксиальные кабели, а в диапазоне СВЧ, начиная с частоты 3 ГГц, используют волноводы.

Волноводы представляют собой проводящие трубки прямоугольного, круглого или эллиптического сечения, которые позволяют волне распростра­няться по длине трубы, отражаясь от ее стенок. Достоинствами волновода по сравнению с коаксиальным кабелем являются низкие потери мощности, низкий коэффициент стоячей волны и высокая рабочая частота, однако они дороги, громоздки, сложны для монтажа, и, несмотря на появление т.н. гиб­ких волноводов, не рассчитаны на многократные изгибы и перегибы.

Коаксиальным кабелем называют кабель связи из одной или нескольких (до 20 и более) коаксиальных пар, в которых оба проводника – внутренний и внешний, представляют собой соосные цилиндры, разделенные слоем изоляции (полиэтиленовой, воздушно-полиэтиленовой, фторопластовой или другой).

Видеосигнал проходит через центральную жилу, в то время как экран используется для уравнивания нулевого потенциала концевых устройств – видеокамеры и видеомонитора, например. Экран также защищает центральную жилу от внешних электромагнитных помех (ЭМП). Для улучшения работы электрического экрана в хороших коаксиальных кабелях предусматривается возвратный провод. Идея соосного строения кабеля состоит в том, что все помехи наводятся только в экране. Если он надежно заземлен, то наводки «разряжаются» через цепь заземления. Коаксиальный кабель замыкает контур между источником и приемником, где центральная жила кабеля является сигнальным проводом, а экран – заземляющим. Поэтому передачу по коаксиальному кабелю и называют несимметричной передачей. В радиоэлектронной аппаратуре чаще всего применяют простой коаксиальный кабель, содержащий одну центральную жилу, окруженную экраном (рис. 1), или триаксиальный кабель, имеющий две центральные жилы.

Совет:

Для передачи сигналов цветности (С) и яркости (Y), выдаваемых спут­никовыми ресиверами, DVD-проигрывателями и другими устройства­ми с интерфейсом S-Videо используйте триаксиальные кабели.

Коаксиальный кабель – самое распространенное средство передачи виде­осигналов. В зависимости от типа видеосигнала его можно передавать от источников к приемникам с помощью коаксиального кабеля с волновым со­противлением 75 Ом на расстояния, приведенные в таблице 1.

Основные характеристики коаксиальных кабелей

Основными характеристиками коаксиальных кабелей являются:

  • Погонное волновое сопротивление (characteristic impedance);
  • Возвратные потери (return loss);
  • Затухание (attenuation).

Погонное волновое сопротивление

Короткие провода и кабели, используемые в обычных электронных блоках оборудования, имеют незначительные омическое сопротивление, индуктивность и емкость и не влияют на сигнал. Однако если сигнал должен быть передан на довольно большое расстояние, в сложную картину передачи информации включается множество разных факторов. Особенно подвержены влиянию высокочастотные сигналы. Тогда сопротив­ление, индуктивность и емкость начинают играть значительную роль и ощутимо влияют на передачу сигнала. С точки зрения электродинамики коаксиальный кабель можно представить в виде схемы, состоящей из сопротивлений (R), индуктивностей (L), конденсаторов (С) и проводников (G) на единицу длины (рис. 3). Если кабель имеет значительную длину, то совокупность элементов R, L и С действует как грубый фильтр нижних частот, который, в свою очередь, воздействует на амплитуду и фазу различных компонентов видеосигнала. Чем выше частоты сигнала, тем больше на них влияют неидеальные свойства кабеля.

Каждый кабель имеет однородное строение и собственный характеристический импеданс (полное сопротивление), который определяется элементами R, L, С и G на единицу длины. Главное преимущество несимметричной передачи видеосигнала основано на том, что характеристический импеданс передающей среды не зависит от частоты (это относится, главным образом, к средним и высоким частотам), в то время как сдвиг фазы пропорционален частоте. Амплитудные и фазовые характеристики коаксиального кабеля на низких частотах в большой степени зависят от самой частоты, но так как в подоб­ных случаях длина кабеля достаточно мала по сравнению с длиной волны сигнала, то влияние на передачу сигнала оказывается незначительным. Когда характеристический импеданс коаксиального кабеля соответствует выходному импедансу источника видеосигнала и входному импедансу приемного устройства, происходит максимальная передача энергии между ис­точником и приемником, такая линия передачи называется согласованной. Для высокочастотных сигналов, каким яв­ляется видеосигнал, согласование полного сопротивления имеет первостепенную важность. Когда импеданс не согласован, ви­деосигнал целиком или частично отражает­ся назад к источнику, воздействуя не только на выходной каскад, но и на качество изоб­ражения. Отражение 100% сигнала происходит, когда конец кабеля либо замкнут нако­ротко, либо оставлен открытым (незамкнут). Вся (100%) энергия сигнала (напряжение, умноженное на ток) передается только тогда, когда есть согласование между источником, средствами передачи и приемником. Вот почему последний элемент в цепи видеосигналов всегда заканчивается нагрузкой в 75 Ом, кото­рую называют терминатором (см. рис. 4).

Совет:

Для гарантированного согласования между источником, средствами передачи и приемником последним элементом в коаксиальной линии включайте 75-Омный терминатор.

В телевидении для всего оборудования, передающего или принимающего видеосигналы, принят характеристический импеданс 75 Ом. Поэтому нужно использовать коаксиальный кабель с полным сопротивлением 75 Ом. Но производители выпускают и другое оборудование, например, с импедансом 50 Ом (которое в отде­льных случаях используется для вещательного или ВЧ-оборудования), но тогда между такими источниками и 75-омными приемниками должны использоваться преобразова­тели импеданса (пассивные или активные). 75 Ом коаксиального кабеля – это комплек­сное сопротивление, определяемое отношением напряжения/тока в каждой точке кабеля. Это не активное сопротивление, и поэтому его нельзя измерить обычным мультиметром.

Полное сопротивление коаксиального кабеля определяется по формуле

Эта формула означает, что характеристический импеданс не зависит от длины кабеля и частоты, но зависит от емкости и индуктивности на единицу длины. Однако, это не так, если длина кабеля превышает 200 метров. В этом случае сопротивление и емкость имеют значение и оказывают влияние на видеосигнал. Потери в коаксиальном кабеле складываются из двух составляющих: диэлектрические потери и потери в проводниках. Потери в изоляции зависят только от её диэлектрических свойств и не зависят от размера кабеля. Потери в проводниках жестко связаны с их размерами, причем в большей мере с сечением центрального проводника, т.к. основная часть электромагнитного поля распространяется в кабеле вдоль него, сильно убывая по направлению к экрану. Очевидно, что с увеличением размеров кабеля концентрация поля вокруг центрального проводника уменьшается, следовательно, уменьшаются и потери. Отклонения погонного волнового со­противления кабельной линии выражают с помощью возвратных потерь. Оценка режима работы линии характеризуется коэффициентом бегущей волны (КБв), который характеризует собой степень согласования линии с нагрузкой. Если КБВ равен единице, линия полностью согласована с нагрузкой. На практике таких линий не бывает из-за невозможности идеального согласования нагрузки с линией.

Величина, обратная коэффициенту бегущей волны, называется коэффициентом стоячей волны.

Понятно, что однородность кабеля по длине имеет большое значение для соответствия требованиям характеристического импеданса. Качество кабеля зависит от точности и однородности центральной жилы, диэлектрика и экрана. Эти факторы определяют значения С и L на единицу длины кабеля. Вот почему надо уделить особое внимание прокладке кабеля и его концевой заделке.

Правила прокладки коаксиального кабеля

  • Петли и изгибы нарушают однородность кабеля. Это приводит к высоко­частотным потерям, то есть потере мелких деталей изображения, а также удвоению изображения из-за отражений сигнала. Качество изображения будет лучше, если изгиб петли будет в 10 раз больше диаметра коаксиаль­ного кабеля. Это равносильно высказыванию: «радиус петли должен быть не меньше 5 диаметров или 10 радиусов кабеля.
  • При прокладке коаксиального кабеля следуйте указаниям производителя о допустимых радиусах изгиба и рекомендуемом расстоянии между местами крепления.
  • При прокладке не разбрасывайте кабель по полу. Если случайно наступить на него или поставить тяжелый предмет, передача сигнала резко ухудшится.
  • Протягивая кабель, не прикладывайте к нему больших механических усилий, не пытайтесь протянуть через маленькое отверстие в стене или узкий короб. Это может привести к деформации или внутреннему обрыву центральной жилы и экранирующей оплетки.
  • Не прокладывайте коаксиальный кабель рядом с проводами электропитания и другими источниками электромагнитных помех.
  • Разрыв кабеля посередине и заделка образовавшихся концов приведет к некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает поте­рю сигнала всего в 0,3 – 0,5 дБ. Если на одном кабеле не слишком много заделок, то сигнал пострадает незначительно.
  • Для перехода с разъема на разъем пользуйтесь специальными переходниками (рис. 5).

1 – BNC-вилка на RCA-розетку; 2 – BNC- розетка на RCA-вилку; 3 – BNC-розетка-розетка; 4 – RCA- розетка-розетка; 5 – BNC-вилка на Т-образный разветвитель с двумя BNC-розетками; 6 – BNC-вилка на Y-образный раз-ветвитель с двумя BNC-розетками; 7 – BNC-розетка с терминатором 75 Ом; 3,5-мм стереофонический штекер на разветвитель с двумя RCA-розетками

Степень искажения синусоидальных сигналов линиями связи оценивается по таким характеристикам, как затухание и полоса пропускания.

Затухание показывает, насколько уменьшается мощность эталонного синусоидального сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.

Затухание сигнала на 100 футов длины некоторых популярных зарубежных кабелей показано в таблице 1.

Совет

При выборе марки коаксиального кабеля для инсталляции всегда сле­дите за тем, чтобы его полоса пропускания превышала ширину спектра передаваемого сигнала.

Шум и электромагнитные помехи

То, насколько хорошо экран коаксиального кабеля защищает центральную жилу от шума и ЭМП, зависит от процента экранирования. Как правило, производители указывают в спецификациях цифры от 90 до 99%. Но имейте в виду, что даже если обещано 100% экранирование, невозможно получить защиту от внешних наводок на все 100%. Проникновение ЭМП внутрь коак­сиального кабеля зависит от используемой частоты. Теоретически, успешно подавляются толь­ко частоты выше 50 к Гц – главным образом, из-за ослабления скин-эффекта. Все частоты ниже этой в меньшей или большей степени наводят в экране электроток. Насколько силен электроток, зависит от напряженности магнитного поля. Понятно, что нас, прежде всего, интересует излучение тока промышленной частоты (50 или 60 Гц), окружающее почти все технические устройства.

Вот почему возникают проблемы, если коаксиальный кабель проведен па­раллельно проводам и кабелям электросети.

Конструкция коаксиальных кабелей

Как устроен коаксиальный кабель, знают все мало-мальски связанные с радиотехникой люди. Однако некоторые аспекты их конструкции нередко вызывают досадные ошибки. Например, многие путают изоляцию коаксиаль­ного кабеля с его оболочкой. В радиочастотных коаксиальных кабелях изоляцией принято называть конструкцию, изолирующую внутренний проводник от внешнего, а вот тот материал, которым покрывают кабель снаружи, называется оболочкой. Обычно в каталогах и прайс-листах в графе «Диаметр» указывается диаметр коаксиального кабеля по изоляции без учета толщины оплетки и оболочки. Поэтому, если вам важен наружный диаметр кабеля (к примеру, для прокладки его по заранее смонтированным коробам определенного размера), следует заранее его уточнить.

Медь – один из лучших проводников для коаксиального кабеля. Только золото и серебро обладают более высокими эксплуатационными показателями (сопротивление, коррозия), но для производства кабеля они слишком дороги. Многие полагают, что лучшие кабели получаются из покрытой медью стали, но это не так. Покрытая медью сталь просто дешевле и, возмож­но, жестче, но для длинных кабелей лучше использовать медь. Омедненные стальные коаксиальные кабели приемлемы для коллективной антенны, где передаваемые сигналы ВЧ-модулированы (VHF или UHF, MB или УВЧ). А именно, на более высоких частотах так называемый скин-эффект (повер­хностный эффект) проявляется сильнее: фактический сигнал перетекает на медную поверхность проводника (не экрана, а центрального проводника).

Совет

При выборе марки коаксиального кабеля для инсталляции отдавайте предпочтение кабелям с медными жилами.

По степени жесткости коаксиальные кабели можно разделить на 4 группы:

  • гибкие;
  • полугибкие;
  • полужесткие;
  • жесткие.

К гибким относят кабели, выдерживающие до 50 000 перегибов и более. У таких кабелей экраном служит оплетка из тонких проволок. Так как оплетка – не сплошной проводник и имеет существенное расстояние между проволоками, то через отверстия происходит «просачивание» электромагнитного поля наружу. Кроме того, для электрического тока оплетка представляет собой огромное количество контактов между проволоками, что ведет к увеличению ее сопротивления и, в конечном счете, увеличивает затухание сигнала в кабелях этого типа.

Гибкие кабели не подходят для передачи сигналов на расстояния, превышающие 50 м.

В полугибких коаксиальных кабелях для повышения степени экранирования и уменьшения электрического сопротивления и, следовательно, затухания, на изоляцию сначала накладывается металлическая фольга, а поверх нее – оплетка. У таких кабелей затухание значительно ниже, чем у гибких, однако они гораздо менее гибкие. Такие кабели широко используются в сетях кабельного телевидения, а в радиотехнических системах широкого применения не нашли.

Полужесткие коаксиальные кабели имеют сплошной сварной внешний проводник. В 95% конструкций этот проводник имеет спиральный или кольцевой гофр. Кабали этого типа имеют низкий коэффициент затухания и отличное экранирование. В зависимости от размеров и материала изоляции они могут обеспечивать передачу довольно большой мощности (до 5 кВт на час­тоте 100 МГц для отечественного кабеля РК50-17-51).

Жесткие коаксиальные кабели, больше похожие на водопроводные трубы, чем на радиочастотные кабели, предназначены в основном для передачи сигналов большой мощности.

Совет

При выборе коаксиального кабеля для инсталляции используйте мягкие кабели только для джамперов, а основную линию выполняйте из полугибких кабелей.

Необходимо отметить, что радиочастотные кабели, находящиеся большую часть времени на открытых пространствах (радиомачтах, крышах и т.д.), должны быть устойчивы к повышенным и пониженным температурам и их перепадам, к воздействию влаги и солнечного излучения. Для повышения механической прочности некоторые коаксиальные кабели снабжаются металлическим тросом, принимающим на себя основные нагрузки. Как уже говорилось, обычный коак­сиальный кабель состоит из цент­рального проводника, внутреннего диэлектрика, экрана и внешней оболочки (Рис. 1).Центральный проводник кабеля предназначен для передачи сигна­ла из одной точки в другую. Его делают из материалов, хорошо проводящих электрический сигнал. Обычно используется медь, которая подходит для этих целей по своим электрическим, механическим и стоимостным параметрам. Центральный проводник может быть как одножильным, так и многожильным.

Одножильный – это центральный проводник, выполненный в виде одного прямого проводника. Одножильный проводник хорошо формуется, но не очень гибкий. Поэтому кабели с одножильным проводником обычно используются в стационарных инсталляциях.

Витой многожильный – представляет собой проводник, состоящий из множества тонких проводников, свитых вместе. Эти кабели гибкие, они легче и применяются в основном в мобильных инсталляциях. Однако характеристики такого кабеля будут несколько ниже, чем кабеля с одножильным провод­ником того же типоразмера.

Внутренний диэлектрик, называемый также внутренней изоляцией кабеля, выполняет в коаксиальных кабелях важную роль. Прежде всего, это материал, который изолирует центральный проводник от экрана. Но, кроме того, он определяет импеданс и емкость кабеля. Обычно в кабелях общего назначения используется полиэтилен, а для производства негорючих кабелей фторсодержащие полимеры. Дешевые кабели имеют диэлектрик из твердого полиэтилена. Более серьезные производители используют вспененный полиэтилен, который обеспечива­ет более низкое погонное затухание сигнала в кабеле на высоких частотах.

Стоит заметить, что некоторые производители вспенивают диэлектрик химическим способом. В результате получается низкоплотный полиэтиленовый компаунд, подверженный механическим повреждениям и нестабильный к воздействию окружающей среды в виде температуры и влажности.

Наибольшее качество кабеля получается с физически вспененным диэлектриком (gas injected foam polyethylene). Он содержит до 60% воздушных пу­зырьков, за счет чего уменьшается затухание высоких частот сигнала. По прочности физически вспененный полиэтилен не отличается от обычного твердого невспененного полиэтилена, обеспечивая необходимую гибкость и устойчивость к механическим воздействиям. И, наконец, обладая высокой стойкостью к температурным колебаниям и влажности, физически вспенен­ный диэлектрик обеспечит стабильность параметров и длительную эксплуатацию кабеля.

Совет

При выборе марки коаксиального кабеля для инсталляции отдавайте предпочтение кабелям с физически вспененным диэлектриком.

Экран выполняет две важных роли. Он работает как второй проводник, подключенный к общему земляному проводу оборудования. В то же время он экранирует сигнальный проводник от посторонних излучений. Существуют различные методы экранировки для кабелей, выполняющих различные задачи. Это экран из фольги, плетеный экран и комбинации из фольги и оплетки.

Оплетка – экран, который изготавливается из множества тонких проводников, сплетенных в виде сетки, охватывающей центральный проводник с внутренним диэлектриком. Оплетка обычно обладает меньшим сопротивлением, чем фольга и обладает лучшей устойчивостью к постороннему электромагнитному полю и электромагнитным наводкам. Оплетка может сочетаться с другими видами экранов, например, с алюминиевой или медной фольгой для обеспечения необходимого процента экранировки.

Фольга может обеспечить до 100% экранировки в сочетании с оплеткой. Учитывая, что оплетка может обеспечить эффективность экранировки до 90%, чтобы получить 100% необходимо две оплетки, что существенно увеличива­ет стоимость кабеля, его вес и ухудшает гибкость. Гораздо легче добиться 100% эффективности экранировки можно сочетанием оплетки и фольги.

Необходимую защиту внутренних компонентов кабеля обеспечивает внешняя оболочка. Оболочка защищает кабель от климатического, химического, и воздействия солнечного света. По типу оболочки кабели можно разделить на кабели стандартного и специального исполнения.

Стандартный кабель имеет обычную, чаще всего поливинилхлоридную оболочку, которая защищает кабель (или мультикор) от механических воздействий и влаги, а так же играет роль электрической изоляции.

Заполненный (Plenum) – стандартная инсталляция предполагает прокладку кабеля через стены и потолки. Возможное возго­рание внутри здания предъявляет свои особые требования к оболочке кабелей. Кабели типа Plenum имеют огнестойкую оболочку, в составе которой используются специальные компаунды. Это обеспечивает низкую горючесть и дымовыделение в случае, если кабель будет подвергнут воздействию ог­нем. Такой кабель может быть проложен без трубопровода, что снижает затраты на инс­талляцию.

Галогенонесодержащий – низкое выде­ление дыма и паров, отсутствие галогенов в материале оболочки кабеля требуют ев­ропейские правила техники безопасности (IEC33203 тест на горючесть, IEC61034 тест на дымовыделение, IEC754-1 коррозионная стойкость). Для передачи RGBHV, S-Video и компонент­ных сигналов несколько коаксиальных кабе­лей могут объединяться в мультикор (рис. 6) с общей оболочкой. Количество коаксиальных кабелей в мультикоре может быть от двух до шести, кроме того, в мультикор могут добавляться балансые аудиопары и силовые проводники, что делает их еще более универсаль­ными.

Совет

Для передачи большого количества сигналов разных типов по одному кабелю используйте мультикоры.

При монтаже необходимо обратить особое внимание на предотвращение попадания влаги внутрь кабеля. Особенно остро эта проблема стоит при использовании кабелей с кордельной изоляцией. Прежде всего необходимо герметизировать (влагозащищать) кабель при установке соединителей.

Отдельный класс коаксиальных кабелей составляют кабели для подземного размещения.

При построении антенно-фидерного тракта (АФТ) обычно придерживаются следующей схемы. В качестве основной передающей системы выбирается полужесткий кабель с хорошими характеристиками. Непосредственно же к радиоаппаратуре на одном конце и антенне на другом подключаются с помощью коротких отрезков гибкого кабеля, т.н. джамперов (рис. 7). Такая схема удобна и выгодна экономически, т.к. если подключать полужесткий кабель напрямую к устройствам, то из-за большого радиуса изгиба при­шлось бы использовать как минимум на 6 м кабеля больше, а это дороже, чем два коротких джампера, да и обслуживать оборудование без джампе-ров попросту неудобно. Однако при работе на достаточно высоких частотах (800-900 МГц) даже короткие джамперы на гибких кабелях могут значительно ослаблять и искажать сигнал. Поэтому целесообразнее в качестве джам-перов в этой части АФТ использовать полужесткий тонкий кабель, т.к. раз­ница в цене между ними относительно всего АФТ незначительна.

Еще одним немаловажным элементом при подключении коаксиального кабеля к аппа­ратуре является разъем (соединитель). При подборе этого на первый взгляд нехитрого устройства необходимо руководствоваться двумя критериями: хорошими электричес­кими характеристиками и удобством заделки на кабель.

Разъемы

В телевидении широко используется концевая заделка коаксиального кабеля, которая называется BNC-разъемом (по первым буквам фамилий создателей Bayonet-Neil-Concelman). Существует три типа BNC-разъемов: с резьбой, запаиваемые и с обжимкой.

Конструктивно разъем выглядит следующим образом: внутри металлической гильзы с накидной фиксирующей муфтой (при ее повороте разъемное соединение надежно фиксируется) есть тонкий центральный сигнальный контакт. С другой стороны гильзы находится контактная трубка для экранной оплетки. Сигнальный проводник проходит через эту трубку и вставляется в штырек, который входит в центральный контакт. На контактную трубку надевается другая трубка, которая, собственно говоря, и обжимается спе­циальным инструментом. Центральный контакт бывает никелевым, посеребренным и позолоченным. Сама гильза, чаще всего, никелированная.

Совет

Опыт доказывает, что обжимные BNC-разъемы – самые надежные. Для них требуются специальные и дорогие обжимные инструменты, но траты на них себя оправдывают. Больше 50% проблем, возникающих при установке систем, являются результатом плохой или неправиль­ной заделки кабеля.

Самые распространенные BNC-разъемы – штекерные (штыревые контакт-соединения, «папы»). Существуют также гнездовые контакт-соедине­ния («мамы»), угловые адаптеры, адаптеры BNC-BNC (их часто называют «barrels»), 75-омные концевые заделки (или «фиктивные нагрузки»), адапте­ры BNC к другим типам соединений и т.д.

Для бытовой аппаратуры коаксиальный кабель может быть разделан в соединитель типа RCA (известный еще как «тюльпан», из-за схожей с цветком формы соединителей старых выпусков). Это очень простой и дешевый соединитель, однако он рассчитан исключительно на применение в комнатных условиях и для профессиональной аппаратуры не подходит.

Применяются разъемы RCA для несимметричной передачи аналоговых сигналов линейного уровня, в основном от различных записывающих устройств. Кроме того, этот разъем находит применение в цифровом интерфейсе формата SPDIF. Известная фирма Canare производит разъемы RCA обжимного типа для установки на коаксиальные провода.

RCA – изначально «неправильный» разъем, так как соединение сигнального контакта штеккера с сигнальным контактом гнезда происходит раньше, чем соединение земляных контактов. Некоторые фирмы, например, Neutrik, производят штеккеры типа RCA с выдвинутым подпружиненным земляным контактом, который соединяется с земляным контактом гнезда раньше, чем сигнальный контакт.

Совет

По возможности избегайте применения разъемов типа RCA.

Все разъемы RCA можно разделить на две группы. Одни предназначены для передачи аналогового сигнала, а вторые – для передачи цифрового сигнала SPDIF, вследствие чего они обладают характеристическим импедансом 75 Ом. Распайка (или обжимка) и тех, и других разъемов совершенно однозначная: центральный контакт – сигнальный, а цилиндр вокруг центрального контакта – общий.

Правила разделки разъемов

  • Для разделки разъемов никогда не пользуйтесь подручным инструментом – вы легко можете повредить центральную жилу и экран кабеля. Пользуйтесь специальным инструментом для снятия изоляции с кабеля и опрессовки, показанным на рис. 7 и 8.
  • Подбирайте кабельные разъемы, соответствующие выбранному типу кабеля. Если кабель окажется толще диаметра в хвостовике разъема, его не удастся собрать, а если тоньше – первый же случайный рывок выдернет кабель из разъема.
  • При разделке не прилагайте больших физических усилий. Если разъем не собирается, значит, вы делаете что-то не так.

 

 

 

 

 

 

 


 

 


Читать далее...
Назначение силовых кабелей в аудиосистемах часто является предметом обсуждений среди аудиофилов и технических специалистов. Хотя для некоторых это может показаться несущественным аспектом, для других силовые кабели являются ключевым компонентом в дос...
Межблочные кабели играют важную роль в передаче аудиосигнала между компонентами аудио системы. Несмотря на то, что они могут казаться простыми и незначительными, их влияние на качество звука может быть значительным. В этой статье мы рассмотрим основн...
Давайте обсудим различия между балансными и небалансными аудиосигналами и кабелями для их передачи....
Случалось вам прийти на деловую встречу и тратить драгоценное время на то, чтобы оборудование начало нормально функционировать? А тщетные попытки найти кабель нужного интерфейса и длины, с беганием по кабинетам и опросом коллег, в результате чего сов...
ABL
Absen
Adam Hall
AKG
Altinex
AMX
Atlas
Atlas IED
Audac
Audipack
AVCIT
Avocor
Axiom
Barco
BEYERDYNAMIC
Biamp
BLUSTREAM
Bosch
Brightline
BSS
BXB
Cambridge
Canare
Canon
Caymon
Chief
ClearOne
Community
Crestron
Crown Audio
Cypress
Da-Lite
dbx
Draka
Epiphan Video
ErgoFount
FCI™
Gefen
Global Cache
Hannay Reels
HARMAN
HK Audio
HKmod
IAdea
InFocus
iRidium
JBL
Jupiter Systems
Kondator
Kramer
Legrand
LG
LUMIEN
Lutron
Magenta
Middle Atlantic
MikroTik
Minrray
Opticis
Optoma
Peerless-AV
Percon
Procab
Proel
Qtex
Returnstar Technology
Sagitter
Screen Goo
Sennheiser
Sierra Video
Sommer Cable
tvONE
VHD
Vogels
Xilica

Компания "Мератек"

Телефон: +7 495 755-13-94

Отдел продаж: sales@meratec.ru
Отдел маркетинга: marketing@meratec.ru

Заказать звонок

2010 - 2024 © Мератек - официальный поставщик профессионального аудио видео оборудования в

Узнать цену
Заказать звонок
Заказать консультацию